
The quantity Yint<~. 1.5 exp (--I/(• 2/~))//~. For small values of z K the volt-ampere 
characteristics depend weakly on =he behavior of the solution of the problem (1.12)-(1,16) in 
the interval (ZK, --ZK). An analogous conclusion, based on the results of numerical calcula- 
tions, was drawn in [6]. 

in real lasers the neutral gas is in motion. As a result of this, there is a convective 
removal of the Joule heat and a viscous boundary layer is formed in the regions near the elec- 
trodes. The density of the gas can no longer be considered constant. This means that the 
calculation of the parameters of the flow in the electric field must be carried out on the 
basis of a simultaneous solution of the gasdynamics equations and the system (I.i) (with the 
pressure p replaced by the density p(x)). 

This study may be regarded as one of the steps aimed at the investigation of the proper- 
ties of system (i.i) with variable density and the calculatlon of the electrical discharge in 
real electroionizatlon lasers. 
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A PARAXIAL MODEL FOR THE GROWTH OF AN EXTERNALLY MAINTAINED DISCHARGE 

INFLUENCED BY ITS OWN MAGNETIC FIELD 

G. V. Gadiyak and V. A. Shveigert UDC 537.633.9 

A high-power electrical-ionization laser system employing compressed gas involves a high 
discharge power and large geometrical dimensions. This increases the magnetic field of the 
spatial discharge, and this begins to influence the motion of the electrons responsible for 
the ionization. When the Larmor radius for the electrons becomes comparable with the trans- 
verse dimensions of the discharge, the distribution of the ionization losses and of the elec- 
tron density will be substantially inhomogeneous [1]. 

Here we consider an approximate model for a gas discharge initiated by a high-power rela- 
tivistic electron beam. An analytic expression for the spatial distribution of the energy 
absorbed in the discharge is derived for the steady-state case. 

A two-dimensional problem can be formulated (Fig. i) for a typical geometry of the 
spatial discharge in a laser in which the longitudinal dimension is much larger than the 
transverse dimension d, I << Zo (d, distance between electrodes; Z, width of the discharge, 
which is determined by the width of the beam; and lo, length of the discharge). A rela- 
tivlstic electron beam with zero velocity spread is injected along the z axis from the cathode, 
with electron energy U b and current density Jb' A potential difference Uo is applied to the 
electrodes and there is a gas at pressure Po (arm) in the space between them. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
i, pp. 60-66, January-February, 1981. Original article submitted September 25, 1979. 
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Fig. i 

In a high-power pulse laser, an electron concentration of ~lOLa-10 Is am -s is attained in 
a time much less than the characteristic time ~d for change in the discharge current. The 
beam charge neutralization and the establishment of a cathode layer require times of several 
nanoseconds for establishment at such an electron concentration. Further beam injection re- 
sults in a quasineucral gas-discharge plasma, and the conduction currents are substantially 
larger than the displacement ones. The Characteristic dimensions of the cathode layer are 
~10-a-10 -~ cm, while the cathode potential drop is only a small part of the potential dif- 
ference applied to the discharge gap [2], so we can neglect the effects of the cathode layer 
on the motion of the beam electrons and the discharge dynamics. At the start, there are 
discharge electrons in the gap, which are produced by some previous ionization and have a 

1 2  1 3  - - 3  . ' 

density ~i0 -I0 cm , and therefore the charge neutralization for the beam and the 
establishment of the cathode layer are not further considered. 

The characteristic times for change in the beam current are T b >> d/el where c is the 
velocity of light, so the injection of the relativistic beam may be taken as quasistationary. 
The assumptions of quasineutralicy and quasiscacionary behavior are not applicable for the 
excitation of discharge-plasma oscillations by the beam, but it can be shown that the elec- 
tric fields arising in such oscillations are small for the currents usually employed and do 
not influence the ionization of the relatively dense gas (po ~ 0.I arm) [3]. 

If Tb and Td are much greater than the skin time* (Tbl Td >> 4~Ziu/ca, where o is the 
gas conductivity), then the induced electric field is small by comparison with the field Uo/d 
applied to the gap. Then the field may be written as E = --V~. 

In what follows we do not consider the scattering of the beam electrons by the gas mole- 
cules, which enables us to use the hydrodynamic equations to describe the motion of the beam 
with a zero pressure tensor. We know of no numerical calculations for self-consistent models 
for an externally maintained discharge that employ a kinetic equation to describe the motion 
of the beam electrons. The external electromagnetic field simulates the field from the 
spatial discharge and the beam, and calculations on the ionization loss for the beam elec- 
trons have been performed on this basis [5-7] by Monte Carlo methods. If the energy acquired 
by a beam electron in the electrode gap is much less than Ub, we can also neglect the effects 
of the electric field on the motion of the beam electrons. In relation to the above assump- 
tions we must emphasize that we are examining a fairly crude model for a gas discharge that 
enables one to elucidate the effects of the magnetic field of the discharge on the spatial 
homogeneity of the absorption of the electrical energy in the discharge gap in a fairly simple 
fashion. 

Within the framework of these approximations, we have the following system of equations 
for the externally maintained gas discharge: 

rot. h = - -  "T e (~tndvq~ + nbv), 

~n___d 
= ---1 " b -  ~]d,, d + ~(t.d,, d, Ot 'rib 

= __ A_ [v ,  h ] i  d i v  n~,v = O, ( v v )  ? v  ,~,c 

*The opposite case of beam injection with a given current distribution has been considered 
[4]. 
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where h is the magnetic field strength; n d, 8@, B, density, recombination coefficient, and 
mobility for the discharge electrons; n b and v, density and velocity of the beam electrons; 
7 = 1 + Ub; rib , ionization time for a beam electron, with rid the same for a discharge elec- 
tron; and e and m, electronic charge and mass. We neglect collisional ionization (Td/Tid << 
I) and the E dependence of u, 8d to write the dimensionless equations 

rot H = --NdVO -- ~NbV; (i) 

div NbV ---- 0; (3) 

( v v )V  ----- --2• (4) 

where V = v/8c; N d = nd/ndo; N b = nbeBc/Jb; ho= (4~/c)endoBU.; H = h/ho; ~ =r r, = t/d; 
= t/Td; n = Jbd/endo~Uo; • = ehod/2mcaB7;~ = (~7 a -- i)/7; in eliminating the dimensions it 

has been assumed that the beam current density at z = 0 is described by jb(t) = JbJ (t), where 
Jb is the characteristic beam current, while nde and x d are chosen from the condition 

I/do = "V/b/Xib~}defic and 1: d = !/~dnid �9 

Then the following are the dimensionless boundary and initial conditions for (1)-(4): 

= o, = t ;  (5 )  

VlZl= 0 m (0, 0, ~); (6)  

Ndlx=o ---- e << l ,  (8) 

where  0 (y)  i s  a H e a v i s i d e  s t e p  f u n c t i o n .  

The s o l u t i o n  t o  ( 1 ) - ( 4 )  i s  d e p e n d e n t  on p a r a m e t e r s  •  n ,  l / d  and t h e  form of  t h e  f u n c t i o n  
J(z). In our numerical calculations we used J (x) = 1 --exp (-~/Xp). We now examine (1)-(4) 
with (5)-(8) in the paraxial approximation [8], where it is supposed that the beam density 
varies little along the direction of the beam motion at distances of the order of the trans- 
verse compression of =he beam, which means that the transverse velocity component Vy is small 
and also that the transverse fields are weak [9]. This approximation also enables us to use 
the equations of cold hydrodynamics (3) and (4) with a given density profile for the beam 
current as in (7). Then we write the longitudinal velocity of the beam as V z = 1 -- I/2V;, 
where 

y v~ << t, (9) 

and n e g l e c t  t e rms  o f  o r d e r  1/2V~ to  r e d u c e  ( 1 ) - ( 4 )  to  two e q u a t i o n s  f o r  Nd(rX, T) and I x ( x ) :  

~ = / (+) Ng; (10)  

1 
S I 1 ('~) dz I 

Nd = t, (ii) 

We have for the longitudinal compo- where I, = Id/endoBUoIZo and I is =he discharge current. 
nent of the electric field that 

~0 [1 i 

Equation (i0) describes the discharge density in region I (Fig. 1), which is occupied by =he 
beam at time r; in region II there is recombinational decay of the gas-discharge plasma. In 
region I, the .densities of the beam and discharge electrons are independent of yx, while at 
the boundary with region II, which is described by 

yg(Z 1, T) = ___ ~ (I-- • (T) + f1(T))z~)+ (13) 

the normal component of the electric field is zero. 
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We see from (13) that (i0) and (Ii) describe the compression of the beam and the dis- 
charge. If • is larger than some value • there is some instant T, when with yg(Zl = i, ~,) = 0 
the beam is focused at the anode. On further injection, the contraction in the discharge 
moves towards the cathode (broken lines in Fig. i) and in principle several foci may form in 
the beam in the gap. However, it is impossible to use (10) and (ii) for times ~r, because the 
discharge-electron density in region III (Fig. i) is dependent on yl. In the real situation, 
the minimum beam width yg min is always finite, which is due to the spread in the beam veloc- 
ities at z = 0 and to diffusion of the beam electrons on account of scattering at the gas 
molecules. Therefore, this model is not applicable for the focusing region for • ~ ~ ,. Re' 
maining within the framework of our model, yg min may be estimated by incorporating the terms 
~V~/2, and then y~ min ~ (~/id) s. System (i0) and (ii) may be solved numerically for times 
less than T,. Figure 2 shows results for • = 0.5, ~ = 0.1 and Tp = 0.3, viz., the dependence 
on the distance to the anode for the electric field strength (a) and the discharge power (b) 
for various instants (i -- t = 0.6 m d, 2 -- t = 1.2 T d, 3 -- t = 1.8 Td ), where M is the dimen- 
sionless discharge power (M = Nd(B$/%zx)a), while ~$/~z, is determined from (12). The in- 
homogeneity in the discharge power is K = Mmax/Mmi n, which is much greater than the inhomo- 
geneity in the electric field, and the assumption that 8d and p are independent of E/po is 
partially justified even for discharges highly inhomogeneous in power. Figure 2 shows that 
K ~ 2 even for • = 0.5 and t = 1.2 ~d, i.e., we have a highly inhomogeneous contribution to 
the energy in the gas. 

In the stationary case, where J(~) = i and ~Nd/~T = 0, the solution to (i0) and (ii) can 
be obtained analytically: 

( i )i/2 

where the discharge current Ix is found from 

Ia arcsin ]" • (~1 + 1,) = i. (14)  
r  (q -J- I1) 

From (13) and (14) we obtain a value for • that can serve as an estimate for the critical 
parameters of a real discharge: 

•  = u/(2 + ~q). (15)  

We have the degree of spatial inhomogeneity in the discharge power as 

K = t/(1 - -  z(q + I1))~/2. 

Figure 3 shows the maximum overvoltage Emaxd/Uo , K, and the total discharge current Ix as 
functions of x for stationary case for ~ = 0.i (lines i-3, respectively). 
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One of the ways of improving the homogeneity of the discharge is to set up an external 
magnetic field that compensates the effects of the magnetic field from the spatial discharge 
[5, 10]. If an external homogeneous magnetic field h~ is applied to the system (Fig. 1) along 
the z axis, then system (1)-(4) with condition (9) is again reduced to two equations: 

ONd t -- N~, 
~ = j(T) si.2xlzl 

I ~ II (~) dz1 

N d sin" • ---- t ,  
o t - • (~lJ ( ' 0  + -ri ( '0)  .. 

X l 

(16) 

where • m eh~d/2mcaB7; here we neglect the effects of the magnetic field on the beam current 
Jx arlsing for h t  ~ 0j as V x << V z by virtue of condition (9). In the stationary case 

Nd_ ~ i 
(17) 

where I~ is defined by (16): 

and F(~, k m) is an elliptic integral of the first kind. 

Figure 4 shows K as a function of ~ for various • (i -- ~ = O, 2 --~ = ~/2, 3 --• = 
3~/2); from (16) and (17) we can derlvex, for the case of an external masnetlc field. For 
x~ ~/2 the total current I~ in discharge focusing is zero and 

(19) 

and f o r  

�9 ~ ~I ,,, 

~1 < ~ I1 = sin xll,' (n/2, sin zl) 

and x ,  = ~1-# .11 sin~• 

For • << i, (19) naturally coincides with (15), and an increase in x~ naturally corresponds 
to an increase in • 

As we have pointed out above, our results are correct for a fairly narrow range in the 
beam and discharge parameters, and therefore they are qualitative rather than quantitative. 
For example, the approximations adequately represent hlgh-power discharges with relatively 
small transverse dimensions induced by high-current beams of hlgh-energy electrons. Under 
such conditions, the electron movement in the beam is influenced mainly by the magnetic field 
of the spatial dlscharge, whose contribution to the spatial distribution of the electrical 
energyin the gas has been incorporated. As criteria for the appllcabillty of this model 
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we have I >> d, U b >> eUo/mc a, where ~ is the beam-electron scattering lengths for the gas 
molecules. 

The case of a thin discharge is the most interesting, i.e., a discharge with small ~/d, 
where (9) is obeyed even for high inhomogeneity in the energy deposition. For example, con- 
dition (9) in the stationary case with ~ = ~, can be written as (1/2)(I/d) 2 << 1. 

These results show that an externally maintained discharge with • of the order of • will 
be substantially inhomoganeous in space, and therefore the creation of a high-power laser 
based on a compressed gas requires a more detailed study of the physical processes responsible 
for homogeneity in absorption of the electrical enerEy in the spatial discharge. 

We are indebted to A. M. Orishich and A. G. Ponomarenko for valuable discussions and 
advice. 
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